Centrosome motility is essential for initial axon formation in the neocortex.
نویسندگان
چکیده
The mechanisms underlying the normal development of neuronal morphology remain a fundamental question in neurobiology. Studies in cultured neurons have suggested that the position of the centrosome and the Golgi may predict the site of axon outgrowth. During neuronal migration in the developing cortex, however, the centrosome and Golgi are oriented toward the cortical plate at a time when axons grow toward the ventricular zone. In the current work, we use in situ live imaging to demonstrate that the centrosome and the accompanying polarized cytoplasm exhibit apical translocation in newborn cortical neurons preceding initial axon outgrowth. Disruption of centrosomal activity or downregulation of the centriolar satellite protein PCM-1 affects axon formation. We further show that downregulation of the centrosomal protein Cep120 impairs microtubule organization, resulting in increased centrosome motility. Decreased centrosome motility resulting from microtubule stabilization causes an aberrant centrosomal localization, leading to misplaced axonal outgrowth. Our results reveal the dynamic nature of the centrosome in developing cortical neurons, and implicate centrosome translocation and microtubule organization during the multipolar stage as important determinants of axon formation.
منابع مشابه
Centrosome movements in vivo correlate with specific neurite formation downstream of LIM homeodomain transcription factor activity.
Neurons must develop complex structure to form proper connections in the nervous system. The initiation of axons in defined locations on the cell body and their extension to synaptic targets are critical steps in neuronal morphogenesis, yet the mechanisms controlling axon formation in vivo are poorly understood. The centrosome has been implicated in multiple aspects of neuronal morphogenesis; h...
متن کاملLKB1 regulates neuronal migration and neuronal differentiation in the developing neocortex through centrosomal positioning.
The cerebral cortex is formed through the coordination of highly organized cellular processes such as neuronal migration and neuronal maturation. Polarity establishment of neurons and polarized regulation of the neuronal cytoskeleton are essential for these events. Here we find that LKB1, the closest homolog of the Caenorhabditis elegans polarity protein Par4, is expressed in the developing neo...
متن کاملLoss of the cisternal organelle in the axon initial segment of cortical neurons in synaptopodin-deficient mice.
The axon initial segment of cortical neurons contains the so-called cisternal organelle, an enigmatic formation of stacked endoplasmic reticulum and interdigitating plates of electron-dense material. This organelle shows many structural similarities to the spine apparatus, a cellular organelle found in a subpopulation of dendritic spines. Whereas roles in calcium signaling and protein trafficki...
متن کاملP15: Hippocampus-Neocortical Communication in Learning
The hippocampus is located in the medial temporal lobe and is a part of the forebrain. It plays a critical role in formation of declared memories. The hippocampus is banana­-shaped and communicates with all parts of neocortex. Reptiles and birds have structures like hippocampus that potentially serve as navigation functions. During the mammalian evolution, the neocortex has a large expansio...
متن کاملDynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization.
Neuronal migration and process formation require cytoskeletal organization and remodeling. Recent studies suggest that centrosome translocation is involved in initial axon outgrowth, while the role of centrosomal positioning is not clear. Here, we examine relations between centrosomal positioning, axonogenesis, and microtubule (MT) polarization in multipolar and bipolar neocortical neurons. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 31 شماره
صفحات -
تاریخ انتشار 2010